If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2+23y=24
We move all terms to the left:
12y^2+23y-(24)=0
a = 12; b = 23; c = -24;
Δ = b2-4ac
Δ = 232-4·12·(-24)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-41}{2*12}=\frac{-64}{24} =-2+2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+41}{2*12}=\frac{18}{24} =3/4 $
| Y=250+9x | | X-25=x | | n+11=55 | | 14x+16=5x-3 | | c-10=9 | | i-23=23 | | 3e=30 | | 3^3x-1=1 | | 8-5y=4 | | -k+78=98-20- | | -k+78=98-2- | | -8a-1=93/4 | | 19+x/2=-2 | | -9(x-4=81 | | 5x÷7+10=×÷3 | | 5-4s=-5+6s | | 4-5(x+2)=3(x=1)-1 | | 2(x-5)=10/ | | 5x+3x+4x=x | | (b-4)(3b+1)=0 | | 9c−9=10c | | -3d=6−6d | | 9x+5+7x-1=180 | | -333=3s | | 2z=-9−z | | 6x-20=6x-4=180 | | -6+8n=10n | | 5b=9+6b | | 3x3+7x4+5=69 | | 3x+14=7x-4=180 | | 4x+8=0.1x+3=3.9x | | x^2-29=3x |